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Abstract

The multiple circle detection problem has been considered in the paper on the basis of given data point set A ⊂ R2.
It is supposed that all data points from the set A come from k circles that should be reconstructed or detected. The
problem has been solved by the application of center-based clustering of the set A, i.e. an optimal k-partition is
searched for, whose clusters are determined by corresponding circle-centers. Thereby, the algebraic distance from a
point to the circle is used. First, an adaptation of the well-known k-means algorithm is given in the paper. Also, the
incremental algorithm for searching for an approximate globally optimal k-partition is proposed. The algorithm locates
either a globally optimal k-partition or a locally optimal k-partition close to the global one. Since optimal partitions
with 2, 3, . . . clusters are determined successively in the algorithm, several well-known indexes for determining an
appropriate number of clusters in a partition are adopted for this case. Thereby, the Hausdorff distance between
two circles is used and adopted. The proposed method and algorithm are illustrated and tested on several numerical
examples.

Keywords: Multiple circle detection, Center-based clustering, Globally optimal partition, Approximate optimization,
DIRECT

1. Introduction

Clustering or grouping a data set into conceptually
meaningful clusters is a well-studied problem in recent lit-
erature, and it has practical importance in a wide variety
of applications such as medicine, biology, pattern recog-
nition, facility location problem, text classification, infor-
mation retrieval, earthquake investigation, understanding
the Earth’s climate, psychology, ranking of municipali-
ties for financial support, business, etc. (Liao et al., 2012;
Morales-Esteban et al., 2010; Pintér, 1996; Sabo et al.,
2011, 2013; Tan et al., 2006).

A multiple circle detection problem is considered in
the paper based on given data set A ⊂ R2. Let us as-
sume that all data from the set A = {ai = (xi, yi) ∈
R2: i = 1, . . . ,m} ⊂ R2 come from k circles that should
be reconstructed or detected. There are many different
approaches for solving this problem in literature, which
are most often based on Hough transformation (Ballard,
1981), different heuristic methods (Chung et al., 2012;
Cuevas et al., 2012; Kim and Kim, 2001; Qiao and Ong,
2004), RANSAC (Fischler and Bolles, 1981) or fuzzy clus-
tering techniques, that search for the so-called soft or
fuzzy partitions (Bezdek et al., 2005; Song et al., 2010;
Theodoridis and Koutroumbas, 2009).

A center-based clustering method is applied to solving
this problem (Kogan, 2007; Sabo et al., 2013; Teboulle,
2007). The setAwill be grouped into k nonempty disjoint
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subsets π1, . . . , πk, 1 ≤ k ≤ m, such that

k∪
i=1

πi = A, πr ∩ πs = ∅, r , s, |π j| ≥ 1, j = 1, . . . , k. (1)

This partition will be denoted by Π(A) = {π1, . . . , πk},
and the elements π1, . . . , πk of such a partition are called
clusters in R2.

To each cluster π j ∈ Π a corresponding circle-center
C⋆j (S ⋆j , r

⋆
j ) with center S ⋆j = (p⋆j , q

⋆
j ) and radius r⋆j is

associated by solving the following global optimization
problem (GOP)

(p⋆j , q
⋆
j , r
⋆
j ) = argmin

p,q,r∈R

∑
ai∈π j

D(C(p, q, r), ai), (2)

where D(C(p, q, r), ai) represents the distance from the
point ai to the circle C (see Section 2.1).

If the objective function F :P(A; m, k) → R+ is de-
fined on the set of all partitions P(A; m, k) of the set A
containing k clusters, then the quality of a partition may
be defined and one can search for the globally optimal k-
partition by solving the following GOP

argmin
Π∈P(A;m,k)

F (Π), F (Π) =
k∑

j=1

∑
ai∈π j

D(C j(p j, q j, r j), ai). (3)

Conversely, for a given set of different circles
C1, . . . ,Ck ⊂ R2, applying the minimal distance principle,
the partition Π = {π1, . . . , πk} of the set A can be defined
in the following way:

π j = {a ∈ A: D(C j, a) ≤ D(Cs, a), ∀s = 1, . . . , k, s , j}, (4)

j = 1, . . . , k,

Preprint submitted to Elsevier June 29, 2014



where one has to pay attention to the fact that every el-
ement of the set A occurs in one and only one cluster.
Therefore, the problem of finding an optimal partition of
the set A can be reduced to the following optimization
problem

argmin
C1,...,Ck⊂R2

F(C1, . . . ,Ck), (5)

F(C1, . . . ,Ck) =
m∑

i=1
min

j=1,...,k
D(C j, ai).

The solution of (3) and (5) coincides (Späth, 1983). In
general, the function F can have a great number of inde-
pendent variables, it does not have to be either convex or
differentiable and usually it has several local and global
minima. Hence, this becomes a complex GOP.

The adaptation of the well-known k-means algorithm
for searching for a locally optimal partition is given in
Section 2, where clusters are determined by correspond-
ing circle-centers. In Section 3, a new algorithm for
searching for an optimal partition is proposed and an il-
lustrative example is shown. In Section 4, the problem of
determining an appropriate number of clusters in a parti-
tion is considered. The well-known Davies-Bouldin in-
dex, Calinski-Harabasz index, and Simplified Silhouette
Width criterion are adopted and used for the case observed
in the paper. Finally, in Section 5, several numerical ex-
amples are shown.

2. Adaptation of the k-means algorithm

The well-known k-means algorithm (Kogan, 2007;
Leisch, 2006; Teboulle, 2007) will be adapted for search-
ing for a locally optimal partition with circles as clusters-
centers. The algorithm can be described in two steps
which are repeated iteratively:

Algorithm 1. (k closest circles algorithm (KCC))

Step A: For each set of mutually different circles
C1, . . . ,Ck the set A should be divided into k
disjoint unempty clusters π1, . . . , πk by using the
minimal distance principle (4);

Step B: Given a partition Π = {π1, . . . , πk} of the set A,
one can define the corresponding circle-centers
C⋆1 (p⋆1 , q

⋆
1 , r
⋆
1 ), . . . ,C⋆k (p⋆k , q

⋆
k , r
⋆
k ) by solving the

following GOPs ( j = 1, . . . , k)

(p⋆j , q
⋆
j , r
⋆
j ) = argmin

p,q,r∈R

∑
ai∈π j

D(C(p, q, r), ai). (6)

Knowing a good initial approximation, this algorithm can
provide an acceptable solution, but in case we do not have
a good initial approximation, the KCC-algorithm can be
restarted several times with various random initializations
(Leisch, 2006).

2.1. The distance from the point to the circle

In order to solve the multiple circle detection problem,
it is very important for the distance between a point and
a circle to be well defined. This distance will be used by
applying the minimal distance principle (4), by determin-
ing circle-centers of clusters (6), and by defining the most
appropriate number of clusters in a partition in Section 4.
Several approaches to determining the distance from the
point ai = (xi, yi) ∈ R2 to the circle C(S , r) with center
S = (p, q) and radius r have been proposed in literature
(Ahn et al., 2001; Chernov, 2010; Drezner et al., 2002;
Nievergelt, 2002; Song et al., 2010):

D1(C(S , r), ai) = |∥S − ai∥ − r|, (7)
D2(C(S , r), ai) = (∥S − ai∥ − r)2, (8)
D(C(S , r), ai) = (∥S − ai∥2 − r2)2. (9)

The last possibility (9) is called the algebraic distance. It
is very often used in practical applications (see e.g. Niev-
ergelt (2002); Song et al. (2010)) and for that reason that
possibility is also used in our paper.

2.2. Searching for the circle-center of a cluster

The GOPs (6) can have several local and global minima
and the corresponding minimizing function is continuous.
Note that, if (7) or (8) were used as the distance from
the point ai to the circle C, then the corresponding mini-
mizing function would be a Lipschitz continuous function
(see e.g. Sergeyev and Kvasov (2011)). Therefore, for
solving GOPs (6) in these cases, some global optimiza-
tion methods (see e.g. (Jones et al., 1993; Neumaier, 2004;
Pintér, 1996; Sergeyev et al., 2001) and corresponding
software http://www.pinterconsulting.com) can be
used. One of the most popular algorithms for solv-
ing a GOP for the Lipschitz continuous function is the
DIRECT (DIvidingRECTangles) algorithm (Finkel, 2003;
Jones et al., 1993; Grbić et al., 2013).

In the case of using the algebraic distance (9), exact so-
lutions of GOPs (6) can be obtained (Chernov, 2010). In
the case of using the distance (7) or (8), special meth-
ods can also be applied for solving GOPs (6) (Niev-
ergelt, 2002). The random circle consensus technique -
RANSAC (Fischler and Bolles, 1981) can also be used
for circle fitting.

3. A method for searching for a globally optimal par-
tition

LetA ⊂ [a, b]×[c, d] ⊂ R2 be a data points set. A glob-
ally optimal k-partition Π⋆ = {π⋆1 , . . . , π⋆k } with circle-
centers C⋆1 , . . . ,C

⋆
k should be determined as a solution of

GOP (3), or equivalently (5).
Since objective function (5) is a Lipschitz continuous

function, the aforementioned DIRECT algorithm for global
optimization can be used. Because of the symmetry prop-
erty of the function F defined by (5), there are at least k!
solutions of this problem. A very efficient special version
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of the DIRECT algorithm for symmetric functions is de-
veloped in (Grbić et al., 2013). However, complexity of
this problem is particularly emphasized if the number of
clusters or data points m is large. Instead of solving the
GOP (5), motivated by (Bagirov and Ugon, 2005; Bagirov
et al., 2011; Scitovski and Scitovski, 2013), an efficient
method for searching for a very acceptable approximate
of an optimal k-partition is proposed.

First, a sequence of objective functions
Fk:R3 × · · · × R3︸           ︷︷           ︸

k

→ R+,

Fk(C1, . . . ,Ck) =
m∑

i=1

min{D(C1, ai), . . . ,D(Ck, ai)},

(10)
is defined, where C j := (S j, r j), S j = (p j, q j).

For k = 1, the problem is reduced to a simple problem
of locating a circle on the basis of a given set of points in
the plane. The corresponding function F1:R3 → R+ is of
the form

F1(p1, q1, r1) =

m∑
i=1

D(C1(p1, q1, r1), ai)

=

m∑
i=1

(∥S 1 − ai∥2 − r2
1)2, (11)

where S 1 = (p1, q1). There exists a number of algorithms
and methods for solving this problem (see e.g. (Chernov,
2010; Drezner et al., 2002; Nievergelt, 2002)).

For k > 1, an optimal k-partition with circle-centers
C⋆(k)

1 , . . . ,C⋆(k)
k is determined by the following incremen-

tal algorithm.

Algorithm 2. (Searching for an optimal k-partition)

Step 1: Let Ĉ1, . . . , Ĉk−1 be the solution to the k−1-circle
detecting problem and let

Fk−1(Ĉ1, . . . , Ĉk−1) =
m∑

i=1
δik−1,

δik−1 = min{D(Ĉ1, ai), . . . ,D(Ĉk−1, ai)}, (12)

Φk(p, q, r) := Fk(Ĉ1, . . . , Ĉk−1,C(p, q, r)) =

=
m∑

i=1
min{δik−1,D(C(p, q, r), ai)}. (13)

Step 2: By using the DIRECT algorithm for global opti-
mization determine

Ĉk ∈ argmin
(p,q)∈[a,b]×[c,d]

r∈[0,rmax ]

Φk(p, q, r), (14)

where rmax is the maximum radius of circle C,
which can be expected in rectangle [a, b]× [c, d].

Step 3: By using the KCC-algorithm with initial ap-
proximations Ĉ1, . . . , Ĉk determine new centers
C⋆(k)

1 , . . . ,C⋆(k)
k .

An important assumption of the algorithm is usage of
an efficient algorithm for solving a GOP in Step 2. The
DIRECT algorithm for global optimization of a Lipschitz
continuous function was proposed by (Jones et al., 1993).
The algorithm operates by systematically dividing the box
domain of the objective function into hyperrectangles, and
evaluating its values in their centers. There are two phases
to an iteration of DIRECT; first, hyperrectangles are iden-
tified as potentially optimal, i.e., they have potential to
contain a global solution. The second phase of an itera-
tion is to divide potentially optimal hyperrectangles into
smaller hyperrectangles. The objective function is evalu-
ated in the centers of new hyperrectangles.

By increasing the number of circle-centers (Step 2) and
by applying the KCC algorithm (Step 3), the objective
function value does not increase. Therefore,

F1(C⋆(1)
1 ) ≥ F2(C⋆(1)

1 , Ĉ2) ≥ F2(C⋆(2)
1 ,C⋆(2)

2 ) ≥ · · ·
≥ Fk(C⋆(k−1)

1 , . . . , Ĉk) ≥ Fk(C⋆(k)
1 , . . . ,C⋆(k)

k ) = F⋆k ,

and, according to (Bagirov and Ugon, 2005), the maxi-
mum number of clusters kmax that makes sense to be cal-
culated using Algorithm 2 is determined by

F⋆kmax−1 − F⋆kmax

F⋆1
< ϵ, (15)

for some small ϵ > 0. Namely, in that case the relative
reduction of the objective function value for k ≥ kmax is
less than ϵ.

Remark 1. Note that the partitions obtained in this way
can unfortunately not be said to be globally optimal, but
numerous calculations in Section 5 show that the parti-
tions obtained in this way are either globally optimal or
locally optimal partitions close to globally optimal ones
and therefore acceptable in practical applications. In
what follows, the partition obtained by Algorithm 2 will
simply be called an optimal partition.

Note also that by using Algorithm 2 an optimal parti-
tion for each k ≤ kmax is obtained, which makes it possible
to decide on the appropriate number of clusters in a par-
tition by adaptation of various well-known indexes (see
Section 4).

In the following example the proposed Algorithm 2 will
be illustrated on synthetic data.

Example 1. The set of 5 circles C = {Ci = S i +

ri(cos t, sin t): t ∈ [0, 2π], i = 1, . . . , 5} is given in the
plane. In the neighborhood of the i-th circle ni ∼
U(30, 50) random points are generated by using binor-
mal random additive errors with mean vector 0 ∈ R2 and
the covariance matrix .05 I, where I ∈ R2×2 is the identity
matrix. In this way, a data point set A = {ai ∈ R2: i =
1, . . . ,m}, with m = 47+ 34+ 43+ 34+ 43 random points
is obtained.

The algorithm starts with initial circle Ĉ1 = ((3, 3), 1)
(see Fig. 1a left). By using the DIRECT algorithm the cir-
cle Ĉ2 is determined in Step 2 (see also Fig. 1a left) and
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(d) Iteration 4 (k=5)

Figure 1: The flow of the iterative process of Algorithm 2

after that, in Step 3, circles C⋆(2)
1 ,C⋆(2)

2 are obtained by us-
ing the KCC algorithm (see Fig. 1a right). A further flow of
the iterative process provided by Algorithm 2 is illustrated
in Fig. 1b-d. In the end of the iterative process the set of
recognized circles C⋆ = {C⋆(5)

i : i = 1, . . . , 5} is obtained.
Objective function values during the iterative process of
Algorithm 2 are also shown in Fig. 1.

The quality of recognition can be measured by the
Hausdorff distance between sets C and C⋆

dH(C,C⋆) = max{max
Cr∈C

min
C⋆s ∈C⋆

δ(Cr,C⋆s ), max
C⋆s ∈C⋆

min
Cr∈C
δ(Cr,C⋆s )}. (16)

In this example, dH(C,C⋆) = 0.05465.

4. The most appropriate number of clusters

Determining the number of clusters automatically has
been one of the most difficult problems in data cluster-
ing processes (Gan et al., 2007; Kaufman and Rousseeuw,
2005; Kogan, 2007; Vendramin et al., 2009). In simple
cases, the number of clusters in a partition is determined
by the nature of the problem itself. If the number of clus-
ters in a partition is not given in advance, then it is natural
to search for an optimal partition which consists of clus-
ters that are as compact and relatively strongly separated
as possible. For determining the most appropriate number
of clusters in a partition it is possible to find numerous in-
dexes that point to that number. Some of these indexes
are particularly analyzed and adapted in this paper. For
this purpose, in addition to the distance measure between
a point and a circle, it is important to have a good measure
for the distance between two circles.

4.1. The distance between two circles
The distance between two circles C1 = (S 1, r1), C2 =

(S 2, r2) in the plane can be defined as the Hausdorff dis-

tance (Chen et al., 2010; Jüttler, 2001)

dH(C1,C2) = max{max
Y∈C2

min
X∈C1
∥X − Y∥,max

X∈C1
min
Y∈C2
∥X − Y∥}, (17)

where ∥ · ∥ denotes the Euclidean distance.

Proposition 1. For any two circles C1 = (S 1, r1), C2 =

(S 2, r2) in the plane the Hausdorff distance is given by

dH(C1,C2) = ∥S 1 − S 2∥ + |r2 − r1| =: δ(C1,C2). (18)

4.2. Adaptation of some of the known indexes

Let A ⊂ R2 be the set and Π⋆ = {π⋆1 , . . . , π⋆k } an
optimal k-partition with circle-centers C⋆1 , . . . ,C

⋆
k ∈ R2.

Thereby C⋆j = (S ⋆j , r
⋆
j ), where S ⋆j = (p⋆j , q

⋆
j ) is the center

and r⋆j the radius of the circle C⋆j .

(a) Davies - Bouldin index in the standard case for
the optimal partition Π⋆ = {π⋆1 , . . . , π⋆k } of the set A
with k clusters π⋆1 , . . . , π

⋆
k and the corresponding centers

c⋆1 , . . . , c
⋆
k ∈ R2 is defined by (see e.g. (Vendramin et al.,

2009))

DB(k) =
1
k

k∑
j=1

max
s=1,...,k

s, j

V(π⋆j ) + V(π⋆s )

∥c⋆j − c⋆s ∥
, (19)

where

V(π⋆j ) =
1
|π⋆j |
∑

as∈π⋆j

∥c⋆j − as∥.

That is why the Davies - Bouldin index for circle-centers
will be defined analogously to (19) by

DBC(k) =
1
k

k∑
j=1

max
s=1,...,k

s, j

V̂(π⋆j ) + V̂(π⋆s )

δ2(C⋆j ,C
⋆
s )
, (20)
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where
V̂(π⋆j ) =

1
|π⋆j |
∑

as∈π⋆j

√
D(C⋆j , as),

and δ(C⋆j ,C
⋆
s ) is the distance between circles C⋆j ,C

⋆
s

defined by (18) in Proposition 1. Let us notice that
in the definition of the index (20) the property of
non-dimensionality has been retained, since nominators
and denominators have the same dimension (of squared
length).

More compact and better separated clusters in an opti-
mal partition will result in a lower DBC index.

(b) Calinski-Harabasz index in the standard case for
the optimal partition Π⋆ = {π⋆1 , . . . , π⋆k } of the set A
with k clusters π⋆1 , . . . , π

⋆
k and the corresponding centers

c⋆1 , . . . , c
⋆
k ∈ R2 is defined by (see e.g. (Vendramin et al.,

2009))

CH(k) =
G(c⋆1 , . . . , c

⋆
k )/(k − 1)

F (c⋆1 , . . . , c
⋆
k )/(m − k)

, (21)

where

F (c⋆1 , . . . , c
⋆
k ) =

k∑
j=1

∑
ai∈π⋆j
∥c⋆j − ai∥2,

G(c⋆1 , . . . , c
⋆
k ) =

k∑
j=1
|π⋆j | ∥c⋆ − c⋆j ∥2,

where c⋆j = (1/|π j|) ·
∑

ai∈π j

ai are centroids of clusters π j,

and c⋆ = (1/|A|) · ∑
ai∈A

ai is a centroid of the entire setA.

That is why the Calinski-Harabasz index for circle-
centers will be defined analogously to (21) by

CHC(k) =
Ĝ(C⋆1 , . . . ,C

⋆
k )/(k − 1)

F̂ (C⋆1 , . . . ,C
⋆
k )/(m − k)

, (22)

where

F̂ (C⋆1 , . . . ,C
⋆
k ) =

k∑
j=1

∑
ai∈π⋆j

√
D(C⋆j (S ⋆j , r

⋆
j ), ai),

Ĝ(C⋆1 , . . . ,C
⋆
k ) =

k∑
j=1

|π⋆j |δ2(C⋆(S ⋆, r⋆),C⋆j (S ⋆j , r
⋆
j )) =

=

k∑
j=1

|π⋆j |
(
∥S ⋆ − S ⋆j ∥ + |r⋆ − r⋆j |

)2
where C⋆j = (S ⋆j , r

⋆
j ) are center-circles of clusters π⋆j ,

and C⋆ = (S ⋆, r⋆) is a center-circle of the entire set
A. In that way, by definition (22), the property of non-
dimensionality for CHC index has also been retained.

More compact and better separated clusters in an opti-
mal partition will result in a greater CHC index.

(c) Simplified Silhouette Width Criterion in the standard
case for the optimal partition Π⋆ = {π⋆1 , . . . , π⋆k } of the set
A with k clusters π⋆1 , . . . , π

⋆
k and the corresponding cen-

ters c⋆1 , . . . , c
⋆
k ∈ R2 is defined in the following way (see

e.g. (Kaufman and Rousseeuw, 2005; Vendramin et al.,
2009)). For each ai ∈ A ∩ π⋆r the numbers

αir = ∥c⋆r − ai∥, βir = min
s=1,...,k

s,r

∥c⋆s − ai∥,

si =
βir − αir

max{αir, βir}
,

are calculated and the Simplified Silhouette Width Crite-
rion is defined as the average of si: SSW(k) = (1/|A|) ·∑
ai∈A

si.

Analogously, the Simplified Silhouette Width criterion
for circle-centers will be defined. For each ai ∈ A ∩ π⋆r
the numbers

α̂ir = D(C⋆r , ai), β̂ir = min
s=1,...,k

s,r

D(C⋆s , ai),

ŝi =
β̂ir − α̂ir

max{α̂ir, β̂ir}
,

are calculated and the Simplified Silhouette Width Crite-
rion for circle-centers is defined as the average of ŝi:
SSWC(k) = (1/|A|) · ∑

ai∈A
ŝi.

More compact and better separated clusters in an opti-
mal partition will result in a greater SSWC number.

5. Numerical examples

Example 2. The iterative process of Algorithm 2 for k ≤
8 has been implemented for the data from Example 1.
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Figure 2: Indexes for the data from Example 2

The configuration of the obtained circles in iterations after
Step 2 (application of the DIRECT algorithm) and Step 3
(application of the KCC algorithm) for the first four itera-
tions is shown previously in Fig 1. The graphs of the used
indexes are shown in Fig. 2. The DBC index gives a cer-
tain priority to the partition with 5 clusters, the CHC index
gives a clear priority to the same partition, whereas the
SSWC criterion gives an insignificant priority to the parti-
tion with 4 clusters compared to the partition with 5 clus-
ters.

Therefore, it can be said that all the indexes used in
this example have pointed to the partition with 5 clusters
as the most appropriate partition, whereby the Hausdorff
distance between original and recognized circles is suffi-
ciently small (dH(C,C⋆) = 0.05).

Example 3. Set C of 4 concentric circles with common
center S = (5, 5) and radii ri = .75, 1.5, 2.5, 3.5 is given
in the plane. Data point set A is constructed similarly to
Example 1 and it consists of m = 40+40+43+43 random
points around circles.
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(c) Iteration 2 (k=3)

0 2 4 6 8 10
0

2

4

6

8

10
DIRECT HF=68.006L

0 2 4 6 8 10
0

2

4

6

8

10
KCC HF=43.2027L

(d) Iteration 3 (k=4)
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(f) Iteration 4 (k=5)
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(d) Iteration 5 (k=6)
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(f) Iteration 6 (k=7)

Figure 3: The flow of the iterative process of Algorithm 2 for the data from Example 3

The configuration of the obtained circles in iterations
after Step 2 (application of the DIRECT algorithm) and
Step 3 (application of the KCC algorithm) is shown in
Fig. 3. The graphs of the used indexes are visible in Fig. 4.
As can be seen, the DBC index and the SSWC criterion
clearly point to the partition with 4 clusters as the most
appropriate partition. However, as can be seen in (22) and
in Fig. 4, in the case of concentric circles the CHC index is
not usable.

The Hausdorff distance between original and recog-
nized circles is also sufficiently small (Hd(C,C⋆) = 0.05).
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Figure 4: Indexes for the data from Example 3

The numerical characteristics of the proposed algo-
rithms for circle detection were tested on the example of
data originating from three different and well separated
circles and on the example of data originating from three
different mutually intersecting circles, whereby the num-
ber of circle data and their dissipation around circles was
varied.

Remark 2. For the purpose of comparison, the Hough

Transform for circle detection was also used. The prin-
ciple of the well-known circular Hough Transform is that
for circles with equation (x−p)2+(y−q)2 = r2, every point
(x, y) corresponds to the surface of the cone in the (p, q, r)
Hough circle space (the three-dimensional accumulator
array) (Ballard, 1981). Finite detected values are found
at the intersection of all cones. Hence, the Hough Trans-
form for circle detection is based on recognizing the most
intensive points in the Hough circle space. The Hough
Transform is a method not sensitive to outliers.

Example 4. Let C = {C1 = ((2.5, 4), 1.8), C2 =

((7, 3), 2.2), C3 = ((5, 8), 1.2)} be the set of three well sep-
arated circles in the plane (see Fig. 5a). In the neigh-
borhood of each circle µ random points (µ ∈ {20, 40, 60})
were generated by using Gaussian distribution with co-
variance matrix Cov[σ] = {{σ2, σ2/2}, {σ2/2, σ2}}, (σ ∈
{0.1, 0.2, 0.4}). In this way, a data point set A = {ai ∈
R2: i = 1, . . . ,m} with m = 3µ random points is obtained.
Based on these data, we reconstruct circles by applying
Algorithm 2 with initial circle Ĉ = ((3, 3), 1) and by ap-
plying Matlab-function “imfindcircles” which finds cir-
cles by using circular Hough Transforms. The experiment
was repeated 100 times.

After two iterations of Algorithm 2 a set of circles
C⋆ = {C⋆1 ,C⋆2 ,C⋆3 } is obtained. The quality of reconstruc-
tion is measured by using the Hausdorff distance between
sets C and C⋆ according to Proposition 1. Basic numbers
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Figure 5: Data points from Example 4 with µ = 40 and σ = 0.4

Table 1: Percentage of recognition of Algorithm 2 (basic numbers) and
the Hough Transform (numbers in parentheses)

Well separated circles Mutually intersecting circles
σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.1 σ = 0.2 σ = 0.4

µ = 20 85 (1) 72 (1) 52 (0) 68 (5) 52 (3) 41 (2)
µ = 40 97 (4) 94 (4) 64 (2) 89 (3) 84 (5) 60 (2)
µ = 60 99 (1) 96 (1) 86 (2) 87 (4) 86 (2) 77 (2)

in Table 1 show the number of experiments in which Al-
gorithm 2 recognized the set of circles (dH(C,C⋆) < 0.1)
well. The number of such cases is large and it depends
on the number of data µ along the circle and parame-
ter σ in the covariance matrix. This proves a very good
performance of the proposed algorithm. The numbers in
parentheses show the number of experiments in which the
Hough Transform for circle detection recognized the cir-
cles well. The number of such cases is very small. It
turned out that the Hough Transform is not designed for
such case of a relatively small number of data points.
Only in special cases, when it was possible to adjust cer-
tain values of a Matlab option of “imfindcircles” (e.g.,
sensitivity factor), a good reconstruction of circles was
obtained.

A similar experiment is repeated for three mutually in-
tersecting circles (see Fig. 5b), and the obtained results
are similar.

6. Conclusions

The method and the algorithm for solving the multi-
ple circle detection problem on the basis of the given
data point set A ⊂ R2 gives either a globally optimal k-
partition or a locally optimal k-partition close to the global
one. It can be seen that center-circles obtained in this way
present a good approximation of the original circles. The
method has been tested on several numerical examples
with synthetic data on the basis of our own software done
by Mathematica. The Hausdorff distance between orig-
inal and recognized circles shows an acceptable quality
of reconstruction. It is important to note that minimizing
functions (12)-(13) can have several local and global min-
ima and that, precisely for this reason, it is necessary to
use some global optimization method. Since minimizing

functions are Lipschitz continuous functions, the DIRECT
algorithm was found to be very useful.

Assuming that we have a good approximation of the
optimal partition, indexes adapted to the multiple circle
detection problem recognized the appropriate number of
clusters in a partition well. Thereby, algebraic distance
(9) from a point to a circle and the Hausdorff distance
between two circles have been used in the paper. If any
other distance measure from a point to a circle and the
distance between two circles were used, then the corre-
sponding indexes would have to be redefined. Also, some
other well-known indexes could be considered.

Finally, the considered problem can be generalized
such that ellipses in the plane E j = {x ∈ R2: ∥x − C j∥Ai =

1} are considered instead of circles, where C j is the center
of ellipse E j and Ai > 0 is a positive definite symmet-
ric matrix which determines the major and the minor axes
lengths as well as the orientation of the ellipse. In that
way, the ellipse is determined by its 5 parameters. The
problem can be further generalized to a hyperellipse in
Rn (Bezdek et al., 2005).
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Appendix
Proof of Proposition 1

Without loss of generality, it can be supposed that

S 1 = (0, 0), S 2 = (d, 0), d ≥ 0, r2 ≥ r1 > 0. (23)

It should be proved that

dH(C1,C2) = d + r2 − r1. (24)

Let us notice the following points on circle C1, i.e. C2

X1 = (−r1, 0), X2 = (r1, 0) ∈ C1,

Y1 = (d − r2, 0), Y2 = (d + r2, 0) ∈ C2.

The Hausdorff distance between circles C1,C2 is attained
precisely on one of the pairs of points (Xi,Y j), i, j = 1, 2.
That is why (17) becomes

dH(C1,C2) = max{ (25)

max{min{∥X1 − Y1∥, ∥X2 − Y1∥},min{∥X1 − Y2∥, ∥X2 − Y2∥)}},
max{min{∥(X1 − Y1∥, ∥X1 − Y2∥},min{∥X2 − Y1∥, ∥X2 − Y2∥}} }.

In particular, if S 1 = S 2, i.e. d = 0, the Proposition

a) 0 < r1 ≤ d − r2 < d + r2 b) 0 ≤ d − r2 < r1 < d + r2

c) −r1 ≤ d − r2 < 0 < r1 < d + r2 d) d − r2 < −r1 < r1 < d + r2

Figure 6: Possible positions of circles C1,C2 with conditions in
(23)

assertion is true, because then dH = r2 − r1.
Therefore, suppose that d > 0 and consider all possi-

ble positions of circles C1,C2, by which conditions (23)
remain fulfilled (see Fig. 6):

a) 0 < r1 ≤ d − r2 < d + r2
b) 0 ≤ d − r2 < r1 < d + r2
c) − r1 ≤ d − r2 < 0 < r1 < d + r2

d) d − r2 < −r1 < r1 < d + r2

It should be proved that equality (24) holds in each of the
mentioned cases. Only the proof of assertion in case a)
will be considered. In other cases the proof is analogue.

Suppose that 0 < r1 ≤ d − r2 < d + r2 (see Fig. 6a).
Then there holds

min{∥X1 − Y1∥, ∥X2 − Y1∥} = ∥X2 − Y1∥ = d − r2 − r1,

min{∥X1 − Y2∥, ∥X2 − Y2∥} = ∥X2 − Y2∥ = d + r2 − r1,

from which it follows that

max{min{∥X1 − Y1∥, ∥X2 − Y1∥},min{∥X1 − Y2∥, ∥X2 − Y2∥}} =
= d + r2 − r1. (26)

Similarly, from

min{∥X1 − Y1∥, ∥X1 − Y2∥} = ∥X1 − Y1∥ = d − r2 + r1,

min{∥X2 − Y1∥, ∥(X2 − Y2∥} = ∥X2 − Y1∥ = d − r2 − r1,

follows

max{min{∥X1 − Y1∥, ∥X1 − Y2∥},min{∥X2 − Y1∥, ∥(X2 − Y2∥}} =
= d − r2 + r1. (27)

By using (26) and (27) in (25) the required equality (24)
for case a) is obtained.
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